Renovation Technology That Optimizes Renewable Energy; Targeting a Zero-Energy Building (ZEB)

SANKEN SETSUBI KOGYO CO., LTD. JAPAN

Company Profile

Company Name

SANKEN SETSUBI KOGYO CO., LTD.

Established in 1946.

Head Office

Kayabacho First Building, 17-21 Shinkawa 1-Chome, Chuo-ku, Tokyo 104-0033

Paid-in Capital

¥739,954 thousand

Number of Employees

Technical Staff 832

Clerical Staff 328

Total 1,160 (As of April 1, 2019)

Net Sales

¥79,127 million (FY 2019) ≒ \$750 million

Construction Business License

(Toku-24) No.1879 by Minister of Land, Infrastructure, Transport and Tourism

Business Lines

Plumbing Business, Architectural and Construction Business, Electrical

Contracting Business, etc.

First-Class Architect Office Registration

No. 16996 by Governor of Kanagawa Prefecture

https://skk.jp/en

Representative projects

New Olympic Stadium for Tokyo 2020 Total area 194,000m2 B2F-5F 68,000 seats by 11/2019 Toranomon I, 2-chome redevelopment project in Tokyo A-1 Tower 237,000 m2 B4F-49F 265 m Medium, high-rise office, Low rise hotel, commercial facility

What is a ZEB (Zero Energy Building)?

- *ZEB is a building that utilizes high-efficiency air-conditioning systems, natural daylight and enhances the heat-insulation to save energy usage as much as possible while maintaining comfortable indoor environment and generating electricity by photovoltaic and wind power generation on the site.
- **ZEB** minimizes the supply of electricity from power plant that uses fossil fuels.

ZEB is necessary to reduce climate change and to realize a Low-Carbon Society.

Procedure for Achieving ZEB

1. Minimize the load

Enhancing the heat-insulation Control of internal heat generation

2. Introducing high-efficiency systems

Sensible heat and Latent heat decoupled air-conditioning system

3. Utilizing renewable energy

PV, Geo-heat, Solar thermal, Natural ventilation

Achieve ZEB

Energy Consumption Photovoltaic Power Generation

Image of ZEB Definition of Japan

A prerequisite for ZEB is to reduce energy consumption by 50% or more

Outline of Innovated Technology for ZEB of SANKEN

Outline of the Building TSUKUBA TECHNICAL CENTER (TTC)

Location: Tsukubamirai-city, Ibaraki-pref. 40km (25mils) northeast from Tokyo

Site Area: 4,123m² (44,380ft²) Floor Area: 2,258m² (24,305ft²) Reinforced-Concrete structure

Floor Number: Three stories Completion date: Oct, 1992

TSUKUBA TECHNICAL CENTER IN JAPAN

Title: Renewal of TTC towards Zero Energy Building

A prize of Renewal Award from SHASE in 2014

SHASE: Society of Heating, Air-Conditioning and Sanitary Engineers of Japan

Title: The ZEB is interwoven with Wind, Sun and Geothermal heat.

平成26年度 地球温暖化防止活動環境大臣表彰

Minister of the Environment Award

at the countermeasure technology advanced introduction department of global warming prevention activities in 2014.

Title: Renewal towards Zero Energy Building

風と太陽と地中熱が織りなす ZEB をコンセプトに、外装の断 熱性能を高め負荷を削減し、身近にある再生可能エネルギーを 最適に直接利用する潜熱顕熱分離空間技術を開発導入。 放射パネルを PMV により制御する顕熱処型とデシカントコイ ルによる潜熱処理を太陽熱と地中熱を直接利用することにより 冷房、暖房ともコンプレッサーを使用しない極めて少ない消費 エネルギーで快適な空調空間を創造。 中間期は、積極的に窓間けによる外気導入を行い冷房や外気負

Carbon Neutral Award from JABMEE in 2014.

:Japanese Association of Building Mechanical and Electrical Engineers

Title: The 6th Sustainable Architecture Award

Sustainable Architecture Award from IBEC in 2016.

:Institute for Building environment and energy conservation.

TSUKUBA TECHNICAL CENTER IN JAPAN

Innovated Technologies

Elemental Technologies

1. Architectural

- **1** Exterior thermal insulation
- 2 Low-e pair glass

2. Air-conditioning system

- 1 Decoupling Latent heat and Sensible heat Ceiling radiant panel, Latent heat treating system
- Oirect use of renewable energies
 Geo-heat, Solar thermal, Natural ventilation

3. Electric equipment and lighting system

- **1** High efficiency lighting (LED)
- 2 Daylight control and zone control of lighting
- 3 High efficiency transformer

Decoupled Sensible Heat and Latent Heat Air-conditioning System Utilizing Renewable Energies

Main heat source for the air-conditioning system

Cooling: Direct utilization of geo-thermal energy and solar thermal energy (Solar thermal energy for regeneration process of desiccant coil unit)

Heating: Direct utilization of solar thermal energy

Air-conditioning systems that decouple and treat sensible heat load and latent heat load

Concept of Energy-Saving Effect

Decoupled Sensible and Latent Air-conditioning System

SANKEN's decoupled Sensible and Latent Air-conditioning System

Independent Sensible Heat Treating System: Ceiling radiant panel

Independent Latent Heat Treating System : **Dehumidifying unit** and **Desiccant coil unit**

for Outdoor air system

Energy-Saving Effect Concept

of Decoupled Sensible and Latent Heat Air Conditioning System

38% Reduction

Energy Saving Effects (Renewable Energy)

of an air-conditioning system separating latent and sensible heat

Utilization of groundwater and solar thermal to Desiccant System

Energy Saving Effects (Renewable Energy)

of an air-conditioning system separating latent and sensible heat

Utilization of groundwater and solar thermal to Desiccant System

Decoupled Sensible Heat and Latent Heat Air-conditioning System

Sensible Heat Load Treating System (Radiant Ceiling Panel)

Appearance of Radiant Ceiling Panel

A panel made of aluminum → Good heat conductance, Lightweight Slit between the panel → Natural convection effect

Positive Points of Radiant Air-Conditioning

Comfort of Radiant Air-Conditioning

- Heat radiation is the biggest heat quantity of the heat released by a human body.
- The temperature distribution of the room is even because there are only a few drafts.

Positive Points of Radiant Air-Conditioning

Energy Saving of Radiant Air-Conditioning

- •The Cooling is possible by sending cold water to the ceiling metal panel at 18°C, and the efficiency of the heat source COP is improved by a factor of 1.5 or more.
- Further, since water having a specific heat of 1 cal/g·k and it is used as the cooling refrigerant, the conveying electrical power is about 30% of that of air.

PMV Controller

SANKEN developed a PMV controller for the Radiant A/C system. It controls the PMV, which is the theoretical comfort index in the room.

:PMV (Predicted Mean Vote) and PPD (Predicted Percentage of Dissatisfied) ISO7730 (1994))

Scope of application of PMV		7 stage evaluation of PMV	
PMV	-2 <pmv<+2< td=""><td>+3</td><td>Hot</td></pmv<+2<>	+3	Hot
Metabolic equivalent	0.8~4met	+2	Worm
Amount of clothing	0~2clo	+1	Slightly warm
Air temperature	10∼30℃	0	Neutral
Mean Radiant Temp	10 ~ 40℃	۲	Slightly cool
Mean air velocity	0~1m/s	-2	Cool
Relative humidity	30 ~ 70%	-3	Cold

Thermal Image of the Ceiling Panel

During Cooling

Decoupled Sensible Heat and Latent Heat Air-conditioning System

Latent Heat Treating System (Desiccant Coil Unit and Dehumidifying unit)

Desiccant Coil Unit

Batch Process System composed by two desiccant coils

Desiccant Coil Unit

Operation data on 29/08/2013

•Batch Interval:5min

• Chilled Water Temperature : 17.9°C (Groundwater)

Flow rate: 22.6L/min.

• Hot Water Temperature : 55.2°C (Solar thermal)

Flow rate: 21.2L/min.

Average Temperature: 24.8°C

Average Absolute Humidity: 7.7g/kg'

[•] Chilled water temperature of pre-cool coil : 17.9°C(Groundwater)

Outdoor Air Dehumidifying Unit

Operating Condition by PMV control

Energy Consumption and Energy Balance

https://skk.jp/en/zeb/

Primary Energy Consumption in the Office Area

- Primary energy consumption of the office area in 2014 was 313 MJ/m²/year.
- Primary energy consumption of the reference office building is approximately 1600 MJ/m²/year.

Electric Energy Balance

The Photovoltaic Power Generation and the Electric Power Consumption of the Whole Building in 2014

Annual electric power consumption was less than annual photovoltaic power generation.

We achieved net **ZEB**

Rating of TTC in ZEB Evaluation Chart

TTC is rated on ZEB as net Zero Energy Building

Conclusions

- We have achieved a **ZEB** of the **existing building by the renovation work**.
- The ZEB has been accomplished mainly by high-efficiency system and load minimization, and it does not rely on a large amount of photovoltaic generation.
- Sensible heat and latent heat decoupled air-conditioning system is the most important element of the ZEB technology in ASEAN.
- Utilizing renewable energy directly is also an important element of the technology in ZEB, and it is able to operate without heat source machine.

SANKEN's Actions in ASEAN

***SANKEN** would like to emphasize that **ZEB** is necessary to stop the climate change and to realize a Low-Carbon Society for our children and their future.

ZEB, which will improve **health** and **productivity** of the people in ASEAN with **minimized energy consumption**.

Thank you all for your attention !!

PIC: : Mail : Contact Number

Mr,FUJIOKA: y-fujioka@skk.jp: +81-90-1350-0029(mobile): +81-3-6891-0016(Office)
Mr,SAEKI: k-saeki@skk.jp: +81-90-2230-0598(mobile): +81-3-6280-2571(Office)